
FAUSTA: Scaling Dynamic Analysis with
Traffic Generation at WhatsApp

Ke Mao
Meta

kemao@fb.com

Timotej Kapus
Meta

kapust@fb.com

Lambros Petrou
Meta

petrou@fb.com

Ákos Hajdu
Meta

akoshajdu@fb.com

Matteo Marescotti
Meta

mmatteo@fb.com

Andreas Löscher
Meta

loscher@fb.com

Mark Harman
Meta

markharman@fb.com

Dino Distefano
Meta

ddino@fb.com

Abstract—We introduce FAUSTA, an algorithmic traffic gener-
ation platform that enables analysis and testing at scale. FAUSTA
has been deployed at Meta to analyze and test the WhatsApp plat-
form infrastructure since September 2020, enabling WhatsApp
developers to deploy reliable code changes to a code base of
millions of lines of code, supporting over 2 billion users who rely
on WhatsApp for their daily communications. FAUSTA covers
expected and unexpected program behaviors in a privacy-safe
controlled environment to support multiple use cases such as
reliability testing, privacy analysis and performance regression
detection. It currently supports three different algorithmic input
generation strategies, each of which construct realistic backend
server traffic that closely simulates production data, without
replaying any real user data. FAUSTA has been deployed and
closely integrated into the WhatsApp continuous integration
process, catching bugs in development before they hit production.
We report on the development and deployment of FAUSTA’s
reliability use case between September 2020 and August 2021.
During this period it has found 1,876 unique reliability issues,
with a fix rate of 74%, indicating a high degree of true positive
fault revelation. We also report on the distribution of fault types
revealed by FAUSTA, and the correlation between coverage and
faults found. Overall, we do find evidence that higher coverage
is correlated with fault revelation.

Index Terms—software testing, software reliability, dynamic
analysis, continuous integration

I. INTRODUCTION

Dynamic analysis and testing have been used to identify
potential software defects in correctness, performance, secu-
rity, and privacy [1]–[3]. Effective dynamic analysis requires
a comprehensive set of realistic inputs. However, retaining or
anonymizing production inputs for performing the analysis
does not guarantee privacy. Our testing approach does not
replay any real production data in order to remain privacy safe.
Therefore, the input set needs to be generated. The generation
process seeks to cover as many program behaviors as possible.
In recent years, input generation techniques have been widely
studied and practiced for mobile app testing and analysis
[4]–[7], especially for the Android platform. As a result, the
problem of testing client-side applications is relatively well
understood. To study the equally important problem of server-
side testing, this paper introduces the first report of industrial
deployment of computational search algorithms that generate
realistic simulated server-side traffic that has been deployed

into continuous integration in industry at scale (applications
consisting of millions of lines of code, used by over two billion
users every day).

FAUSTA (Fully-AUtomated Server Testing and Analysis)
was developed as a platform for next-generation server testing
and analysis of WhatsApp, a well-known communication
platform deployed by Meta. FAUSTA provides a framework
for dynamic code analysis and testing with the end goal of
helping developers gain confidence in their code changes at an
early stage of the development cycle. The analysis focuses on
helping developers to enforce software reliability, privacy, and
performance for WhatsApp backend services, without relying
on human engineers to write and maintain the tests themselves.
FAUSTA is designed as a platform to allow back-end service
owners to onboard their own products and use-cases.

We initially developed FAUSTA for improving code cover-
age and reducing test maintenance effort. At the time, test code
coverage of the server code base was limited, even though
there was a non-trivial number of unit and end-to-end tests
implemented. Developers also suffered from debugging and
maintaining flaky tests. While we encouraged developers to
continue writing high-quality tests, we proposed to comple-
ment human effort via fully-automatic dynamic analysis. This
analysis aims at comprehensive input generation, especially
to cover those labor-intensive cases, and to reduce manual
effort on maintaining tests. FAUSTA’s input generation is based
on specifications that capture templates of input patterns.
In order to increase coverage we used three complementary
algorithmic strategies: biased random generation, Markov-
based generation [8] and evolutionary search techniques [9].

In order to achieve complete assured privacy safety (by
construction), FAUSTA’s design philosophy is to perform all
its input generation and analysis without replaying real pro-
duction traffic. Furthermore, the traffic FAUSTA generates does
not contain real user data. This ensures that the FAUSTA traffic
can be safely used in a development environment.

FAUSTA was firstly deployed to help improve service relia-
bility. FAUSTA has also been deployed to generate traffic for
privacy and performance regression detection. In this paper, we
focus on the design, deployment and application of FAUSTA
to the problem of testing server-side code for reliability in one



Client A Server Client B

Organization Y

Vendor Organization X

Request

Response

Traffic end-to-end encrypted

Traffic not end-to-end encrypted

Fig. 1: An illustration of WhatsApp Server and its traffic [10].

of the world’s largest communication platforms: WhatsApp.
The key contributions of this work are as follows: We

introduce FAUSTA, a traffic generation platform that supports
large scale testing and analysis. We present FAUSTA’s traffic
generation methodologies and our experience in increasing
coverage with stochastic model-based strategies. We report on
the industrial implementation and deployment of FAUSTA’s
reliability use case at WhatsApp to support testing server ap-
plications at a large scale. Specifically, we reveal that FAUSTA
has found 1,876 unique reliability issues before production,
with a 74% fix rate, since its deployment in September 2020.
We report on the correlation between fault revelation and
code coverage, and also give distribution data that indicates
the types of faults found by this server-side testing approach.
Taken together, these results provide baseline data on industrial
deployment of server-side testing at scale, for future research
and development.

II. BACKGROUND

In this section, we present an overview of traffic generation
with an emphasis on testing and analysis. Moreover, we
introduce traffic specifications used in WhatsApp client/server
communications.

A. Overview of Traffic Generation

For providing effective dynamic analysis able to cover a
comprehensive set of behaviors, FAUSTA needs to generate
various types of traffic depending on the target use cases. For
example:
• Realistic client traffic (that is similar to production) may be

used to help ensuring critical user requests are handled as
expected, or used to detect performance regressions.

• Unrealistic traffic (robustness testing) may be used to exer-
cise corner-case behaviours and show crashes in the server
or expose potential security risks.

• Synthesized traffic with artificial Personally Identifiable
Information (PII) may be used to help dynamic analysis
trace their propagation and logging and therefore prevent
privacy regressions.

Such multi-purpose traffic generation requires deep under-
standing of the use cases and the service under test (SUT).

In this paper, our SUTs are from WhatsApp Server, which
is composed of hundreds of Erlang service applications.
Fig. 1 depicts WhatsApp Server and its traffic. Traffic is
bi-directional between server and clients. Traffic could be
end-to-end encrypted [10] or not end-to-end encrypted when

routed via a Vendor. A user (Client A) may establish private
connections (which are end-to-end encrypted) to another user
(Client B) or organization (Organization Y). An organization
may programmatically send and receive messages via server
exposed APIs. An organization (Organization Y in Fig. 1)
who uses these APIs may designate other infra provider as
the Vendor to operate the API endpoints on their behalf. Note
that some of the SUTs depend on non-Erlang endpoints at
Meta such as the Business API endpoints [11].

WhatsApp server developers proactively detect reliability,
security, and privacy risks by performing internal reviews,
running code analyses, and using automated detection sys-
tems for risk identification and fixing. Externally, WhatsApp
crowdsources the effort by engaging researchers through the
Meta Bug Bounty Program [12] to improve the coverage of
the detection of potential issues.

B. Traffic Specification
The traffic between clients and WhatsApp server follows a

variation of XMPP [13] protocol. While the protocol itself
is beyond the scope of this paper, it is important to note
that messages between client and server can be described
in XML. Listing 1 shows an example of such a message
conveying latency info from an IP address. XMPP calls these
messages stanzas. We have taken this example from Karpisek
et. al.’s [14] work, which contains more details on reverse
engineering the WhatsApp protocol.

Listing 1: A message sent to the server
<relayelection call-id="1431719979-2">
<te latency="-98122">

31.13.74.48:3478
</te>

</relayelection>

According to RFC 6120, a server may opt to accept or
send stanzas that have been validated against the specifica-
tions [15]. An example of a possible specification for the
relayelection stanza in Listing 1 is shown in Listing 2.

Listing 2: A possible specification of message from Listing 1
<relayelection spec:call-id="id">
<te spec:latency="int(x, y)">

<spec:ip>
</te>

</relayelection>

The specification is in XML and has a similar structure to
the actual message. Tag and attribute names are the same,
with the exception of the spec namespace. For example
<spec:ip> denotes that an IP address with a port is expected
in its place. Similarly spec:latency="int(x,y)" indi-
cates that the latency attribute should be an integer between
x and y (where x and y are instances of integers).

Note that this specification only helps validate individual
stanzas and does not describe relationships between them.
For example, it does not prevent an attempt to answer a call
before anyone has made that call. However, this necessary
context awareness between stanzas is addressed by separate
dependency analysis phase described in Section III-D.



Replayer

Instrumented Services

Client Converter

Mutator

Fitness

Oracles Detector

Report Generator

Compiler Code Instrumentor

Initializer

Traces

Specs Spec Parser Data Generators

ConfigsEnv Init.

Categorization

Coverage Collector

Traces Repro Bug Report

Strategies

Biased Random

SUT

Stanza Suite

Ops

Recorded 
Bot Traffic

PII Configs

Taint Configs

Policies

Markov Chain

Evolutionary Search

Configurations FAUSTA

DB

Traffic SerializerStanza 
Distribution

Fig. 2: FAUSTA’s architecture.

III. METHODOLOGY OVERVIEW

A. Design

Fig. 2 shows FAUSTA’s architecture. At Meta a ‘diff’ is the
name given to a code change, while a task is the specification
of a required code change or other action to be taken by a
developer. The overall result from FAUSTA is therefore either
to comment on a developer’s diff (diff signals), or to file a
task, outlining requirements for follow-up developer actions.
The inputs are composed of three types of configurations:
1) Traffic specifications (specs) as described in Section II-B.

These specs are relatively stable and available before the
introduction of FAUSTA.

2) Specific use-case knowledge such as PII configs (which
denote sensitive fields of the specs) and stanzas distribution.
These are helpful in generating domain-specific traffic.1

3) Policies which are used to codify test oracles and instruct
FAUSTA in the kind of violations to catch. The policies are
use case specific. For example, for reliability testing, the
oracle in this paper checks that the SUT should not crash,
nor misbehave by producing soft errors.

FAUSTA takes these configurations as inputs. The spec parser
parses traffic specs and sends them to data generators to
initialize traffic. The strategies module optimizes the initial-
ized traffic and sends it to a replayer which converts the
generated traffic into a client readable format. The replayer
sends traffic to instrumented services, which were compiled
from automatically instrumented sources for coverage and
stack trace profiling. Such instrumented services run in a non-
prod, controlled environment to prevent the instrumentation
from introducing any side effects to production. The ora-
cle detector observes services under test to gather program
behaviors including call stack traces for reporting errors. The
coverage collector gathers line level coverage and uses eval-
uated traffic properties as fitness for feedback into strategies.
Note that the oracle detector observes various types of oracles
e.g., reliability, privacy and performance. A report generator
collects the output and raises diff or task signals, with detailed
bug report including traces and reproduction steps to help
developers debug.

Next we describe how we generate traffic. Section III-B
describes how we convert the specification into traffic. Sec-

1Note that an alternative traffic provision would be to record from internal
bots and replay. However this is not the focus of this paper.

tion III-C presents Markovian and evolutionary strategies for
improving the basic traffic generation.

B. Traffic Generator

The specifications described in Section II-B allow us to
generate individual stanzas. That is, we walk over the XML
and replace all the elements or attribute values in the spec
namespace with an instance of their type. We call this process
spec materialisation. For example specification in Listing 2
could be materialised into the actual stanza in Listing 1.

We instantiate most types by picking a random value from
the set the type represents. For example for int(x, y), we
could pick a random value between x and y. However we can
influence the materialisation by making the type artificially
stricter. For example in the case of spec:call-id, some-
times it would be desirable that some stanzas share the call id.
If call ids were randomly generated that would be unlikely.

Algorithm 1 Traffic generation
1: traffic ← ∅
2: ids← GENERATEIDS()
3: while spec← PICKNEXTSPEC() do
4: stanza← MATERIALISESPEC(spec, ids)
5: traffic ← traffic ∪ {stanza}
6: end while
7: SENDTRAFFIC(traffic)

Algorithm 1 describes the high-level structure of our traffic
generator. The variable traffic is the set holding the generated
traffic. It is first initialized to the empty set. Then the algorithm
generates a small set of ids using the GENERATEIDS function
that will be used in materialisation. Lines 3-7 show the
main traffic generation loop. The loop iterates until it runs
out of specifications to pick, represented by PICKNEXTSPEC
function. There are different possible implementations of the
function PICKNEXTSPEC. Our initial implementation PICK-
NEXTSPEC returns specifications in the order they are written
on disk. While being a very simple strategy, it turned out that it
is hard to beat. In Section III-C we discuss a more advanced
picking strategy. The loop then materialises stanzas using
the spec and ids using MATERIALISESPEC function, which
walks the XML as presented before. Once the execution exits
the loop, the generated traffic is sent to the server (line 7).

C. Stochastic Model based Generation

With stochastic model based generation we augment the
basic Biased Random traffic generation with two different
strategies for implementing the PICKNEXTSPEC function from
Algorithm 1: a Markovian approach [8], based on predicting
the next input and a computational search approach [9], based
on evolving sequences of input.
Markovian Strategy: In this strategy we gather aggregated,
sampled stanza data into a frequency distribution over specs
and build a Markov chain. The goal of this strategy is to
generate artificial traffic that has a similar profile to traffic
observed in production. This is desirable because developers
care more about errors that happen frequently in production.



The frequency distribution is obtained by matching incom-
ing stanzas to the specification and increasing the count of
that spec. The PICKNEXTSPEC function then samples this
distribution a fixed number of times. That means the generated
traffic has a similar profile to the production traffic. The most
common stanzas seen in production are also the most common
stanzas in generated traffic. The idea behind this approach is
that the most common paths should also be tested more; a
philosophy underpinning profile-based testing [16].

We then extended the frequency distribution approach by
also building a Markov chain. States of the Markov chain rep-
resent our specifications. A transition between states A → B
indicates that stanza fitting spec B is likely to follow a stanza
fitting spec A. We build the Markov chain by mapping stanzas
to specs and grouping them by hashes of users who sent them.
For each hash we then order the stanzas by time at which they
were received by the server. We then consider two consecutive
stanzas: if they are close together in time we count it as
a transition. Let us assume we observe the following traffic
coming into the server from Alice starting at time t+ 0:

Time t + 0 t + 1 t + 2 t + 10 t+12
Spec A B A C D

We would count transitions A → B, B → A and C → D,
but not A → C, because they are too far apart in time.

This Markov chain is a dynamically built approximate
model of the protocol. In other words, the Markov chain
determines, given a stanza with spec A, the stanza that is most
likely to be seen next.

We build the frequency distribution and the Markov chain
continuously for traffic generation. First we sample an initial
state from the frequency distribution. The initial state is then
propagated through the Markov chain until it reaches a state
with no outgoing transitions or has done a fixed number of
propagations.
Evolutionary Strategy: FAUSTA also supports evolutionary
search, which is capable of optimizing multiple conflictive
objectives [17]. We have explored traffic minimization and
coverage maximization via guided evolutionary search, which
demonstrated convergences towards the favored properties of
generated traffic. On fitness, we’ve implemented heuristics
calculation to guide the search toward traffic minimization and
coverage maximization. On representation, each individual in
the population is a suite of stanzas, and the initial population
is generated by randomly choosing from a pool of traffic specs
and materializing them into stanzas. On operators, we perform
a tournament selection, uniform crossover and whole suite
mutation (Mutator in Fig. 2) by replacing the individual with
new stanzas. At the time of writing, this strategy is currently
under development and has yet to be fully deployed. Therefore,
we do not elaborate further in this paper, and defer a detailed
treatment for a future paper.

D. Guided Flows

Any approach based on stanzas needs to take account of
inter-stanza dependence. FAUSTA does this using an approach

we call ‘guided flows’. Consider Alice tries to call Bob. First
Alice sends a MakeCall stanza to Bob with a call-id:
1235. Then, to establish a call, Bob needs to send an An-
swerCall stanza back to Alice with the same call-id. It is
extremely unlikely that a random traffic generation approach
such as that described in Section III-B would randomly mate-
rialise the same call-id for two otherwise independent stanzas
MakeCall and AnswerCall. To tackle this, the algorithm needs
context awareness, so that dependencies between stanzas can
be taken into account when generating traffic.

Guided flows allow us to use developers’ domain knowledge
to help guide traffic generation. A guided flow consists of
two parts. First a guided flow is just a sequence of specs
to materialize. In our establishing a call example that would
be call offer spec followed by a call answer spec, which
indicates that a call answer stanza must be preceded by a
call offer stanza. Second a guided flow needs a mechanism
to share values between stanzas that depend on each other.
To implement this mechanism, we leverage the ids from
Algorithm 1. Our implementation is generic, and allows for
arbitrary argument dependencies to be captured from devel-
opers’ domain knowledge. In the remainder of this section
we illustrate using the archetypal dependence of the call-id
argument. Dynamically changing the ids between invocations
to MATERIALISESPEC, gives us a mechanism to overwrite the
value we care about to achieve the desired path. As an example
of a guided flow, Listing 3 shows an Erlang sketch of a guided
flow for establishing a call between Alice and Bob.

Listing 3: A guided flow example to establish a call
1 CallId = 1235,
2 OfferRandomIds = GenerateIds(),
3 OfferIds = proplists:substitute_aliases(
4 [{call_id, CallId}, {to, bob}, {from, alice}],
5 OfferRandomIds),
6 MaterialiseSpec(call_offer_spec, OfferIds),
7 AnswerRandomIds = GenerateIds(),
8 AnswerIds = proplists:substitute_aliases(
9 [{call_id, CallId}, {to, alice}, {from, bob}],

10 AnswerRandomIds),
11 MaterialiseSpec(call_answer_spec, AnswerIds),

Listing 3 first generates some random ids at line 2. Then it
overrides the ids we care about for the guided flow at lines 3-
5. This makes sure that the stanza is sent from Alice to Bob
and has a call id. Then the spec is materialised with these ids
on line 6, for clarity we omit sending the materialised stanza
in this exposition. The process is similar for the AnswerCall
stanza, with Bob sending a message to Alice using the same
call id, which is what makes this flow valid. Notice that on
line 7 we regenerates ids, meaning that all the ids that are
not specifically overwritten, will have different random values.
This means that guided flows retain some fuzzing capability.

IV. FAUSTA SYSTEM DEPLOYMENT

FAUSTA adopts a ‘shift-left’ software testing philosophy,
which seeks to move testing effort early within the software
development life-cycle. The shift-left strategy has been widely
adopted by Meta for various types of issues e.g., reliability,



performance, privacy and security. It has been used in testing
client-side [5] as well as server-side (as reported here), and
also has been used to test Meta’s simulation platform, WW
[18]. Meta’s approach to the shift left philosophy is not
restricted to testing, but has also been used in static analysis
[19]. By shifting left, there are two major benefits:
Minimized negative impact: Early detection and fixing means
reduced negative impact on users. When we find and fix bugs
in the early stages of the development life-cycle, these bugs
are removed before they reach production, and thereby leave
users entirely unaffected; prevention is better than a cure.
Shorter time-to-fix: as is well known in software testing
research [20], a defect revealed earlier in the life-cycle is less
expensive to fix. This is particularly true in large-scale soft-
ware deployment, such as WhatsApp at Meta: we have found
that the necessary context switching imposed on developers
by late life-cycle fault revelation significantly increases the
cognitive burden on engineers [5], [19].

In the following we describe our practice in deploying
FAUSTA for shifting left, with detailed workflows of the
continuous integration (CI) pipeline.

A. CI Integration

FAUSTA has been integrated into WhatsApp CI pipeline
for dynamic analysis and testing in multiple scenarios. Fig. 3
illustrates WhatsApp’s software development life cycle and
FAUSTA’s role in this process:

Whenever a developer makes any changes of a subject
system, the change set (aka the ‘diff’) needs to be submitted
to a code review system. At Meta, this system is Phabricator,
which provides a set of web-based collaborative software
development tools such as code review and repository browser
(Diffusion). The diff is required to be reviewed and stamped
by at least one other engineer. On diff submission, a target
determinator performs change impact analysis. It analyzes the
diff changes and decides what CI jobs needs to be scheduled.
For example, if a diff only touches comments/documentation
and is no-op to production, a minimal set of CI jobs will be
scheduled for saving computational resources. Test selection
further analyzes what manually written test cases are asso-
ciated with the diff changes and should be scheduled for
checking functional correctness. Then a build job compiles
the subject with diff changes and sends the built artifacts for
testing and verification.

FAUSTA integrates into this process and performs dynamic
code analysis for finding various types of issues e.g., reliability,
privacy and performance. Other typical testing and verifica-
tion jobs include static analysis, unit and end-to-end testing,
and user (developer)-defined checker jobs etc. Once FAUSTA
detects any issues, it performs fault localization based on
collected stack trace to pin-point to a line that introduced the
issue. This signal may get further boosted with other testing
and verification job signals and get prioritized accordingly
(e.g., a critical level signal will block developer’s diff landing
process). The common signal channels are diff signals (which

appear as feedback of the diff in Phabricator) and tasks
(usually triaged to the diff author or oncall of the subjects).

Based on FAUSTA’s and other signals, the diff author may it-
erate above process multiple times until testing and verification
signals are green. Together with a stamp from diff reviewer,
developer can merge the diff into trunk. To verify the health
of trunk, CI schedules continuous testing and verification jobs
periodically, including FAUSTA’s dynamic analysis. A healthy
trunk revision triggers further continuous delivery jobs for
releasing the changes to users.

B. Continuous and Diff Testing

CI jobs may have various schedules depending on the pur-
poses. Two of the most common schedule types are continuous
and diff. There are also other schedule types such as shadow
jobs for verifying CI infra changes without affecting devel-
opers’ user experience. A continuous job runs periodically
on the ‘trunk’ version of the subject software repository,
thereby checking overall system health, while multiple jobs
also trigger on every developer’s diff, as they are submitted
for code review, thereby catching issues before they are even
considered for merging into trunk. Both continuous and diff
time deployments are necessary in practice. This is because
diff time jobs may not cover issues only happen after merging
multiple diffs into trunk (such as inter-diff dependences), while
issues revealed by continuous testing usually require extra fault
localization effort. To perform thorough dynamic analysis at
an early stage, we’ve deployed FAUSTA supported reliability
and privacy analyses for capturing risky changes. Its workflow
works as follows:
Continuous detection workflow: A continuous FAUSTA run
detects unexpected code behaviors on trunk/master.

(1) A scheduler triggers recurring dynamic analysis jobs
for running FAUSTA hourly on master branch of the backend
repository. (2) FAUSTA synthesizes, taints (for taint analysis
that tracks how PII flows through the SUT), and tracks the
newly generated traffic based on configs (e.g., error patterns
for reliability and PII annotations for privacy). FAUSTA’s taint
tracing is supported by code instrumentation in the backend,
specifically geared towards surfacing dynamic taint analysis
results into call stacks. FAUSTA records its synthesized traffic
to allow reproduction. (3) The dynamic analysis monitors code
behaviors, where monitors differ per use case. For example, to
help enforce privacy compliance, it tracks the PII prorogation
and monitors how data sinks handle the data. To capture relia-
bility issues, it monitors whether any service nodes crashed or
suffered from soft errors. (4) A FAUSTA categorizer classifies
unique issues and removes duplication. The categorization is
based on stack trace analysis. (5) A FAUSTA configurable
signal filter automatically reduces signals based on configs
(e.g., it excludes known false positive cases). (6) The FAUSTA
bot files tasks on newly detected issues. The report includes
detailed stack traces, reproduction steps and subject metadata
(e.g., repository commit hash) to help re-run and debug. This
approach to tool integration in continuous deployment through
software engineering bots has been widely studied in the sci-



Source Control 
Tools

Diff Review System

Diff Build

Dynamic Code 
Analyses

Unit Tests

Static Code 
Analyses

Test Selection

Diff Signaling

Target Determinator

Signal Boosting Fault Localization

Sanity Checkers User-defined Linters

Fausta Use Cases

End-to-End Tests

Phabricator

Continuous Build
Continuous Testing and 

Verification Jobs

Diff Job Piplieline

Testing and Verification Jobs

Continuous Delivery 
Pipeline

Trunk Production

Developer

Developer

Users

Fausta LocalizerFausta Reporter

Fausta Integration

Fausta Taint Compiler

Fausta Reporter

Fausta Diff/Cont Jobs

Fausta Cover/Taint

Fig. 3: FAUSTA’s integration into Meta CI.

entific literature [21], and also deployed previously (and highly
successfully) at Meta [5], [19]. (7) We use a ‘human in the
loop’ approach to determine when to escalate risky issues on
developer communication channels, notifying service owners
and stakeholders. This is supported by the standard ‘DevOps’
software deployment methodology, widely used in industry,
which ensures that there is always an available engineer on
call with domain expertise [22]. (8) Service owners check or
triage the reported issues and fix accordingly. Extra follow-
up actions (e.g., retrospective for future prevention) may be
required depending on the severity of the issues.
Diff-time detection: Diff-time signaling is one key step
to further shift regression detection and fixing earlier. The
workflow is similar to continuous detection, but the diff use
case has stricter requirements in time cost of the analysis.
The workflow needs to be efficient for reducing time-to-signal
which is critical for developers’ dev efficiency, as developers
need to wait all diff job to finish before landing the changes,
even though it’s reviewed and accepted by another developer.
Regarding signaling, instead of filing tasks, the issue reports
are raised on developer’s diffs via inline commenting in diff
review tool (Phabricator). The Diff author then checks and
fixes true positive cases before landing their diff (when it
becomes merging into the repository trunk). For false positives,
developers simply react to the FAUSTA signal as part of the
review process. In this way, FAUSTA is a software engineering
bot, giving its signal to developers as part of the code review
process. Developers can also place reports in separate report-
ing channels for discussion and followup, thereby assisting the
continuous improvement of the overall test process.

In practice, we found FAUSTA to be sufficiently efficient to
finish from end to end when materializing traffic with all specs,
without increasing developers’ overall diff time waiting time.
Fig. 4 shows the boxplot of FAUSTA diff time job cost, which
contains statistics from 10,000 uniformly sampled FAUSTA
jobs from the period between March 2021 and August 2021.
On average, FAUSTA took 24.7 minutes per job. The best cases
(1.5 times interquartile range) could finish in 11.3 minutes.
FAUSTA could still finish in 38.7 minutes in most runs when
we consider the worst cases2. These time performance results
are comfortably within the implied Service Level Agreement
(SLA3) required for FAUSTA to play the role of first responder

2These were due to rare flaky infra failures such as networking issues caused
retries. In such cases, no developer-visible signal was reported.

3Expected time-to-signal is set to 30 minutes at the time of writing.

675 1,297 1,482 1,712 2,319

D
iff

Jo
b

Time cost in seconds

Fig. 4: End to end time cost of FAUSTA diff job (including
diff build and harness setup time cost.

in the code review process, which is an important SLA for
software testing bots [23].

C. Reporting Pipeline

Deploying dynamic analysis at scale not only requires
solid technical foundations, but also good user experience. In
addition to FAUSTA’s dynamic analysis itself, FAUSTA aims
to improve development efficiency by performing intelligent
reporting with concise, reproducible and actionable signals. Its
report pipeline contains the following main components:
Fault Categorization: The purpose of categorization is to
classify unique issues, dedupe, and identify pre-existing ones.
FAUSTA performs stack trace based categorization by choosing
the top frame of the SUT for composing a categorization key.
Note that the software classification problem itself is non-
trivial and may frequently suffer from false grouping and false
splitting issues. More sophisticated classification techniques
are out of scope of this paper, which can be found in related
studies [24], [25].
Fault Localization: When practicing automated testing and
analysis techniques at scale in an industrial environment,
one commonly reported issue is the heavy debugging effort,
especially for end-to-end level input generation systems. To
reduce our developers’ debugging effort, FAUSTA fault lo-
calization pin-points to a line that caused the reported issue.
The localization extracts stack traces from dynamic analysis
logs, parses stack trace frames and locates a line that relates
to the diff changes. Such localization info together with the
call stack are reported as inline comments in Phabricator. For
privacy use cases, the call stack instrumentation also helps
developer understand which tainted data fields propagated to
sensitive sinks, and how they were triggered. In addition, Fault
localization on line level laid foundation for integrating with
other automated fixing system at Meta e.g., SapFix [26], [27].
Signal Boosting: Signal boosting helps FAUSTA prioritize
signals and filter out false positives. The basic signal boosting



uses a configurable, rule based approach to filter out false pos-
itives and overwrite issue priority based on empirical knowl-
edge. We also analyze the error patterns detected by FAUSTA
and down prioritize those that are less severe (e.g., soft errors).
Signal boosting would also benefit from a combination of
dynamic and static analysis in our existing CI pipeline. For
example, if both existing static analyzers and FAUSTA dynamic
analyzers pin point to the same issue, we may prioritize the
issue and block developers from landing without fixing. Note
that this work is still in progress and has not been deployed
at the time of writing. Another related signal prioritization
strategy that has been studied and practiced at industry is
based on the prediction of which issues will likely get fixed
by developers [28].
Fix Detection: To improve our understanding on the useful-
ness of FAUSTA reported signals, we’ve deployed fix detectors
for tracking which diff reports got fixed and which did not.
The fix detection is based on differential results across multiple
versions of a diff, i.e., if FAUSTA reported an error on a
certain version of a diff D, we check the existence of the error
from D’ subsequent versions (which also triggered FAUSTA
diff jobs) to see whether the previously reported issue got
fixed before merging into trunk. Note that this approach
assumed that FAUSTA dynamic analysis is deterministic and
reproducible. Such an assumption will not hold in real-world,
complex systems, especially at the scales required for testing
and a large tech deployment like Meta’s. However, our analysis
did show that FAUSTA detected issues are highly reproducible
(and we also include the reproduction steps as part of FAUSTA
reports). This allows us to achieve reasonable sufficiently good
fix detection results as an approximation to true fixes.

V. RELIABILITY TESTING

This section presents results from the deployment of
FAUSTA at Meta to test WhatsApp as a fully integrated
testing technology within the company standard continuous
integration system [29]. This continuous integration system is
used daily by software engineers at Meta (including whom
are specifically developing the WhatsApp platform). Results
reported in the section have been collected over the full year
from September 2020 to August 2021, thereby aggregating
over a sufficient period of time to report reliable results for
fault distributions, fault revelation and correlations between
fault revelation and coverage.
Questions: We evaluate FAUSTA’s reliability error detection
capability to answer to following three questions:
• Q1: Does FAUSTA find real world reliability errors with its

generated traffic? Do developers fix them?
• Q2: What are the most common error types revealed by

FAUSTA?
• Q3: Does coverage improvement lead to more unique errors

detected?
To answer the questions, we continuously collected data

from the deployment of FAUSTA, including errors detected,
fixes applied, coverage achieved and computational resources
deployed to test, during the period between September 2020

2020-09 2020-12 2021-03 2021-07

0

500

1,000

1,500

2,000

Date

Accumulative Detected Errors

Fig. 5: Accumulative reliability errors detected by FAUSTA.

and August 2021. We checked developers’ reactions to the
reports by running automated fix detection complemented by
semi-automated manual analysis.

Fully automated fix detection within a continuous integra-
tion environment is a challenging research topic in its own
right. Space would not permit us cover this topic in detail
in the present paper. However, a more detailed treatment of
the challenges of fully automated fix detection can be found
elsewhere [5].

To understand the correlation between coverage and error
detection capabilities, we instrumented the WhatsApp server
backend, collecting data on coverage over millions of lines
of Erlang code. This provides us with some of the largest
scale empirical data on correlation between coverage and faults
revealed in the literature, and certainly the largest to report
on system level coverage correlations for Erlang. The closest
related work is the recent report on unit test coverage at
Ericsson [30], which found very little evidence for correlation
between unit test coverage and fault revelation.

The WhatsApp backend also depends on other non-Erlang
endpoints at Meta such as the Business API endpoints. In this
reliability use case, we focus on the traffic between WhatsApp
Erlang services and WhatsApp clients. In future work, we will
develop and report upon traffic flows from WhatsApp server
to Meta endpoints, together with other FAUSTA use cases to
performance analysis and privacy assurance.

A. Detected Errors

A natural starting point for any study of software testing
centres on the number of faults found by the testing ap-
proach. In this section we report the reliability errors detected
by FAUSTA. Fig. 5 illustrates accumulative reliability errors
detected by FAUSTA, between September 2020 and August
2021. In total, FAUSTA found 1,876 unique errors. On average,
FAUSTA detected 7.9 unique reliability errors per work day.

The step changes in rate of fault detection seen in the figure
are the result of the FAUSTA engineers feeding back results
and refinement of the stanzas and input generation algorithms



through the first year of deployment. In any industrial deploy-
ment of a software testing technology this feedback loop is
vital to ensure continuous improvement (of testing workflows,
fault reporting, coverage and fault revelation achieved).

Much of the software testing literature concerns the problem
of false positives [20], [31]. Naturally, it is insufficient to report
fault revelation data without also reporting on the number
of faults deemed to be false positives. Of course, answering
this question unequivocally would be equivalent to solving the
halting problem, and so there can be no automated analysis
that determines the real underlying false positive rate.

We do have high confidence in the realism of the test cases,
and since the product we are testing has over 2 billion users,
the probability that an issue detected by FAUSTA is a real false
positive is low. However, as we have discovered in previous
work on static analysis testing at Meta [5], [32], [33] the real
false positive rate is not the primary concern. Some faults are
possible in practice, yet so unlikely to occur, with so little
chance of affecting real end users, that they become naturally
de-prioritised in the fault fixing process. This leads to the
concept of a pseudo-false positive [5].

A pseudo false positive is a fault report that may be a real
fault, but which is not acted upon by developers because, in
their expert judgement, the fault is low priority. The pseudo-
false positive set contains the real false positive set. Therefore,
assessing test effectiveness based on pseudo false positives is
a more demanding evaluation criterion than assessing based
on real false positives. It is also more closely related to
the real world effectiveness of software testing. That is, a
software testing technology that reports only true positives
that are insufficiently high priority for any to be fixed is
just as useless as a testing technology that reports only false
positives. Therefore we focus on the developer fix rate [33]
as our fundamental measure of test technology impact. The
developer fix rate also serves as basis for determining the
derived measurement of the number of pseudo-false positives.

Regarding developer fixes, we found a high fix rate on
FAUSTA raised issues at code review time of 74%. We also
found a much lower fix rate on FAUSTA detected issues from
continuous runs of 20%4, further underlining the importance
of the overall shift left philosophy.5

In order to understand the reason for the 26% of issues
raised that were not fixed, we performed a manual analy-
sis, together with follow-up interviews with developers to
understand the reasons why they may have chosen not to
implement a fix, in response to an issue raised by FAUSTA.
We expected the most common reason to turn out to be
the observation that many of these issues were pseudo-false
positives, and therefore de-prioritised. However our findings
from this follow-up human analysis surprised us. Although
there are pseudo-false positives among the 26%, we found the

4This figure is based on relatively small sample: 2 fixes from 10 issues
reported to developers. By far the majority of the 1,876 faults reported in this
paper were at code review time, as a result of shifting left.

5This confirms other experiences of industrial deployment of static analysis
techniques such as those reported by Distefano et al. [19].

most common reason to not fix was because of the conflict
between the system specs and human intention to ‘let it
crash’ in Erlang (a development paradigm for enhancing fault
tolerance).

There is very little research in the literature on testing
automated service for reliability at scale, and therefore we
have no baseline against which to benchmark our developer
fix rate. The closest published data we could find available, that
is also comparable to our results reported here, was previous
work on client-side automated testing [5]. Comparing against
this previous work, we found that FAUSTA exhibits a very
similar level of fix rate to Sapienz [5].

This is encouraging, because it is much easier to generate
realistic test inputs on the client side; the GUI is available to
distinguish between realisable input sequences and infeasible
sequences. By contrast, without GUI guidance on the server
side, it is possible to generate infeasible sequences. Research
on automated testing has shown this to be one highly impactful
reason for real false positives in automated testing technologies
[34]. It was therefore encouraging that we could achieve
similar fix rates on the server side, as those we were able
to achieve on the client side.

B. The Distribution of Fault Types Revealed by FAUSTA

TABLE I: Error type distribution with exit reasons [35]

Reason Pct. Description
function clause 53.63% Missing matching function clause

when evaluating a function call.
case clause 19.29% Missing matching branch when

evaluating a case expression.
crash report 14.29% Erlang crash report [36]
stack trace (soft error) 8.81% Soft error with stack trace logged

by developers.
badarg 1.77% The argument is of wrong data type

or badly formed.
badrecord 1.35% A bad Erlang record data was

found in an Erlang module.
exit 0.86% The process called exit/1.
emulator error 0.01% Erlang emulator error.
internal error <0.01% Thrift runtime internal error.

One of the unique contributions of industrial experience
papers on software testing lies in the reporting of fault dis-
tribution data from closed source industrial production. Much
academic software testing research necessarily involves open
source software, or laboratory controlled experiments. This
is because it is hard for academic researchers to gain access
to closed source production industrial systems for evaluation
of testing technologies. It is therefore scientifically valuable
to be able to compare fault distribution data from industrial
experience papers with fault distribution data from controlled
academic experiments and empirical results based on open
source systems. The scientific literature also, in turn, feeds
back into industrial decision-making and development priori-
tisation. For example, our results from industrial deployment
of Sapienz [37] allowed us to compare distributions of faults
on Meta systems with previous baseline data from academic



research on multiple different Android test generation systems
[38] as well as our own previous scientific research, conducted
while in academia, on the research prototype of Sapienz [39],
[40]. Interestingly, the fault distribution categories and their
prevalence proved to be surprisingly similar, suggesting that
industrialists could benefit from academic research and vice
versa.

In order to facilitate future comparison from industrial
experience, and also this important academic scholarship on
software testing, we report, in Table I, the distribution of
types of fault revealed by FAUSTA. Table I presents the most
common reliability error reasons revealed by FAUSTA. The
top two most prevalent error types are related to Erlang’s
pattern matching mechanism, where a left-hand side pattern
is expected to match a right-hand side term. At least 73%
reliability issues were caused by missing patterns on either
function or case level. Partial pattern mismatch issues in theory
could be revealed by the static analysis tool Dialyzer [41],
which is a popular Erlang tool for finding code discrepancies
such as definite type errors. However, in practice we found it is
common that FAUSTA’s dynamic analysis signals are uniquely
uncovered by FAUSTA, which may be attributed to Erlang’s
dynamic typing feature and its ‘let it crash’ philosophy. Note
that Table I also includes general error reports which are un-
categorized by root cases. For example, the 14% crash reports
are general Erlang crash reports which could be triggered by
pattern mismatch, while the stack trace reports contain soft
errors handled and logged by developers.

Naturally, care has to be taken interpreting these results.
Our results cannot indicate the (unknowable) distribution of
faults in the code base under test, but only the prevalence
of faults amongst those found by FAUSTA, which may be
different. Furthermore, it is evident from the most prevalent
four categories, that our results are highly specific to the
programming language Erlang.

While this makes it harder to use the results as a base-
line for future research on testing of other languages, for
example backend systems implemented in Hack, the findings
may, nevertheless be of interest to researchers in functional
programming. Erlang is widely regarded as one industrial
example of functional language deployment: real-world large-
scale backend systems have been deployed, not only at Meta,
but also notably at Ericsson. These results may thus contribute
to scientific research (and practitioner discussion) on the cor-
relation between programming language styles and prevalence
of faults [42]–[44].

C. Coverage and Errors

Code coverage is a key foundation for analysis and testing.
There has been much scientific study, and indeed considerable
controversy, concerning the question as to whether code cover-
age is correlated with fault revelation [45]–[48]. Much of the
literature has concerned relatively small programs, research
prototypes, and/or open source systems. More empirical data
is therefore required on large-scale closed source industrial

2021-03 2021-04 2021-05 2021-05 2021-06 2021-07 2021-07 2021-08

Date

Detected Errors
Coverage

Fig. 6: Correlation between coverage and fault revelation.

systems in order to complete the empirical scientific analysis
of these fundamental questions for software testing.

In order to make our own, modest, contribution to this large
and important research literature, we report the results from
our own analysis of the correlation between FAUSTA code
coverage and fault revelation on WhatsApp. Throughout the
deployment of FAUSTA, we used feedback from CI production
to inform testing techniques that lead to gradual increase in
code coverage (see Section III). This gives us the ability to
explore the correlation between coverage and fault revelation.

The closest study of correlation between coverage and fault
revelation to ours is probably the previous results by Antinyan
et al. [30] who reported coverage results from unit testing on
a large-scale real-world telecoms project of approximately 2
million lines of code (LoC), under development by a team
of approximately 150 engineers, with several major releases
per year. These results are comparable to ours in sense that
the number of developers and the size of the system is similar.
Also, although it is never stated in their paper, it is not unlikely
that the system also involved a significant amount of Erlang
code. On the other hand, the results reported by Antinyan
et al. concerned unit testing, whereas our results are for
system level testing. Another key difference may reside in the
observation that the Ericsson product is released publicly only
occasionally, by comparison with WhatsApp, which is subject
of continuous release. The most important difference, however,
is probably the test generation approach: it is likely that many
of the unit tests may have been written by human developers
rather than an automated approach, such as FAUSTA.

In the previous study at Ericsson on unit testing [30],
the evidence that coverage is correlated to fault revelation is
extremely modest. By contrast we found stronger evidence for
a correlation than this previous study on unit testing. That
is, while Ericsson’s unit testing paper reported correlation
coefficients of approximately 0.2 (on a similar size commu-
nications system), we found coefficients of approximately 0.4
(for system level testing using FAUSTA).

Recent research on coverage-fault correlations, more gen-
erally, has suggested that the correlation, where it does exist,



tends to exist only once relatively high levels of coverage have
been achieved [48], and therefore we certainly do not dismiss
the possibility that better fault revelation could be achieved by
further improvements in code coverage. Furthermore, in order
to gain confidence in the correctness of the system under test,
we clearly need the highest possible code coverage, even if
higher coverage were ultimately to prove uncorrelated with
fault revelation. For both reasons, together with the modest
correlation we have served so far, we do intend to consider
and develop techniques to improve code coverage in our future
work.

More specifically, to better understand the relationship be-
tween coverage and error detection capability, we collected
FAUSTA daily detected errors together with its corresponding
code coverage within the subject repository, for the period be-
tween March 2021 and August 2021. Fig. 6 shows the results,
with 7-day moving average to smooth variations introduced
by non workdays/weekends. Overall, we found that higher
code coverage did correlate to FAUSTA catching more unique
reliability errors, although both rank and linear correlations
are relatively modest.

That is, the correlation between code line coverage and
number of detected unique errors exhibits a Pearson corre-
lation coefficient of 0.368 (p = 0.0003) and a Spearman rank
correlation coefficient of 0.38 (p = 0.0002). In both cases the p
value gives strong confidence that each of these two correlation
coefficients is highly unlikely to be zero. The linear and rank
based correlation coefficients are similar, and give evidence
that there is a non-trivial, although modest, correlation between
coverage and fault revelation. This is a further encouragement
to us to consider techniques that may help us to further elevate
server-side code coverage.

Finally we performed an end-to-end experiment to assess
the impact of coverage improvement on the amount of errors
found. For the whole month of June 2021 we ran two versions
of FAUSTA on every published diff in our codebase. The first
version was the latest version with coverage improvements we
have implemented in 2021. The second version was an older
version from the start of 2021. The latest version covered 2.27x
more lines of code than the older version.

We then compared the errors reported on a diff between the
old and new version of FAUSTA. There were 34 occurrences
of issues reported by the new version of FAUSTA, that would
have been missed if we were using the older version with
lower coverage. There were 86 issues reported on diffs in that
time period, which means the additional coverage contributed
39.5% of those issues.

VI. RELATED WORK

This section presents related work on code analysis and
input generation. There are several related code analysis and
input generation systems already deployed at Meta. For exam-
ple, Infer static analysis at scale [19], [33], Sapienz automated
mobile testing with GUI exploration [5], and WES user
interaction simulation [49]. These systems have demonstrated
their effectiveness in hunting software defects under industrial

settings. FAUSTA differs from these prior systems and is
unique in empowering dynamic analysis for server applications
via traffic generation.

On input generation, many techniques from academic and
industrial communities have been proposed in the past decades
[50]–[56]. Android client is one of the hottest subjects that has
been massively studied on its test input generation. However,
the problem remains challenging and largely unsolved in terms
of coverage and benchmarking against random approaches
[38]. For Web client, Wassermann et al. [57] proposed an
algorithm to analyze dynamic code and to model its semantics
based on runtime values. Artzi et al. [58] combined con-
crete and symbolic execution to generate inputs directly for
dynamically-generated Web apps. Halfond et al. [59] improved
test input generation via a novel static analysis algorithm to
help discover Web interfaces. There are also a body of litera-
tures that studied generation strategies for increasing coverage.
Pacheco et al. [60] proposed a random test generation approach
by using feedback from execution of the generated inputs.
Pandita et al. [61] presented a general coverage approach
for improving logical and boundary-value coverage. Wang et
al. [62] proposed SAFL which uses symbolic execution and
guided fuzzing for increasing test coverage.

VII. CONCLUSION AND FUTURE WORK

This paper presents a system named FAUSTA for dynamic
code analysis and testing at large scale with traffic generation.
The FAUSTA approach and its industrial implementation (i.e.,
the FAUSTA system) have been successfully adopted to support
two use cases on reliability testing and privacy analysis at
WhatsApp. The system synthesizes various types of service
inputs, injects them into a controlled sandbox environment
and tracks their prorogation together with statement coverage
to help analyze program behaviors. Its seamless integration
into Meta CI supports developers in revealing software defects
at an early stage of software development life cycle. Results
from the reliability use case showed that the system helped
prevent thousands of risky issues before reaching production.

In the future, we plan to further improve our traffic gener-
ation strategies (e.g., with new guided/targeted mechanisms)
to cover a more comprehensive set of program behaviors. In
addition to reliability testing, we plan to report our expe-
rience and lessons learned from the deployment of privacy
and performance use cases. Another interesting area that we
plan to explore is to combine dynamic analysis with other
static analysis at Meta for improving software defect detection
capability (especially in finding false negatives and reducing
false positives).

ACKNOWLEDGEMENTS

The authors would like to acknowledge WhatsApp and Meta
engineering leadership for supporting this work. The authors
would also like to thank their colleagues who have provided
useful feedback on the FAUSTA system.



REFERENCES

[1] E. Andreasen, L. Gong, A. Møller, M. Pradel, M. Selakovic, K. Sen,
and C.-A. Staicu, “A survey of dynamic analysis and test generation for
javascript,” ACM Computing Surveys (CSUR), vol. 50, no. 5, pp. 1–36,
2017.

[2] M. Tran, X. Dong, Z. Liang, and X. Jiang, “Tracking the trackers: Fast
and scalable dynamic analysis of web content for privacy violations,”
in International Conference on Applied Cryptography and Network
Security. Springer, 2012, pp. 418–435.

[3] S. Hao, B. Liu, S. Nath, W. G. Halfond, and R. Govindan, “Puma:
Programmable ui-automation for large-scale dynamic analysis of mobile
apps,” in Proceedings of the 12th annual international conference on
Mobile systems, applications, and services, 2014, pp. 204–217.

[4] K. Mao, M. Harman, and Y. Jia, “Sapienz: Multi-objective automated
testing for Android applications,” in Proc. of ISSTA’16, 2016, pp. 94–
105.

[5] N. Alshahwan, X. Gao, M. Harman, Y. Jia, K. Mao, A. Mols, T. Tei, and
I. Zorin, “Deploying search based software engineering with Sapienz
at Facebook,” in International Symposium on Search Based Software
Engineering. Springer, 2018, pp. 3–45.

[6] W. Wang, D. Li, W. Yang, Y. Cao, Z. Zhang, Y. Deng, and T. Xie, “An
empirical study of android test generation tools in industrial cases,” in
2018 33rd IEEE/ACM International Conference on Automated Software
Engineering (ASE). IEEE, 2018, pp. 738–748.

[7] T. Cai, Z. Zhang, and P. Yang, “Fastbot: A multi-agent model-based
test generation system beijing bytedance network technology co., ltd.”
in Proceedings of the IEEE/ACM 1st International Conference on
Automation of Software Test, 2020, pp. 93–96.

[8] J. R. Norris, Markov chains. Cambridge university press, 1998, no. 2.
[9] M. Harman, P. McMinn, J. Souza, and S. Yoo, “Search based software

engineering: Techniques, taxonomy, tutorial,” in Empirical software en-
gineering and verification: LASER 2009-2010, B. Meyer and M. Nordio,
Eds., 2012, pp. 1–59, LNCS 7007.

[10] “WhatsApp security whitepaper.” [Online]. Available:
https://www.whatsapp.com/security/WhatsApp-Security-Whitepaper.pdf

[11] “Whatsapp Business API.” [Online]. Available:
https://developers.facebook.com/docs/whatsapp

[12] “Facebook bug bounty program.” [Online]. Available:
https://www.facebook.com/whitehat

[13] “Uses of XMPP: Instant messaging.” [Online]. Available:
https://xmpp.org/uses/instant-messaging

[14] F. Karpisek, I. Baggili, and F. Breitinger, “Whatsapp network forensics:
Decrypting and understanding the whatsapp call signaling messages,”
Digital Investigation, vol. 15, pp. 110–118, 2015, special Issue: Big
Data and Intelligent Data Analysis.

[15] “RFC 6120: Extensible Messaging and Presence Protocol (XMPP):
Core.” [Online]. Available: https://xmpp.org/rfcs/rfc6120.html

[16] N. Li and Y. K. Malaiya, “On input profile selection for software testing,”
in Proceedings of 1994 IEEE International Symposium on Software
Reliability Engineering. IEEE, 1994, pp. 196–205.

[17] M. Harman, “The current state and future of search based software
engineering,” in Proc. of FOSE’07, 2007, pp. 342–357.

[18] J. Ahlgren, M. E. Berezin, K. Bojarczuk, E. Dulskyte, I. Dvortsova,
J. George, N. Gucevska, M. Harman, M. Lomeli, E. Meijer et al.,
“Testing web enabled simulation at scale using metamorphic testing,” in
2021 IEEE/ACM 43rd International Conference on Software Engineer-
ing: Software Engineering in Practice (ICSE-SEIP). IEEE, 2021, pp.
140–149.

[19] D. Distefano, M. Fähndrich, F. Logozzo, and P. W. O’Hearn, “Scaling
static analyses at Facebook,” Communications of the ACM, vol. 62, no. 8,
pp. 62–70, 2019.

[20] S. Anand, E. K. Burke, T. Y. Chen, J. Clark, M. B. Cohen,
W. Grieskamp, M. Harman, M. J. Harrold, P. McMinn, A. Bertolino
et al., “An orchestrated survey of methodologies for automated software
test case generation,” Journal of Systems and Software, vol. 86, no. 8,
pp. 1978–2001, 2013.

[21] M.-A. Storey and A. Zagalsky, “Disrupting developer productivity one
bot at a time,” in Proceedings of the 2016 24th ACM SIGSOFT
International Symposium on Foundations of Software Engineering, 2016,
pp. 928–931.

[22] L. Leite, C. Rocha, F. Kon, D. Milojicic, and P. Meirelles, “A survey
of devops concepts and challenges,” ACM Computing Surveys (CSUR),
vol. 52, no. 6, pp. 1–35, 2019.

[23] K. Bojarczuk, I. Dvortsova, J. George, N. Gucevska, M. Harman,
M. Lomeli, S. Lucas, E. Meijer, R. Rojas, and S. Sapora, “Measurement
challenges for cyber cyber digital twins: Experiences from the deploy-
ment of facebook’s WW simulation system,” in ACM/IEEE Interna-
tional Symposium on Empirical Software Engineering and Measurement
(ESEM ’21), October 2021.

[24] Y. C. Cavalcanti, E. S. de Almeida, C. E. A. da Cunha, D. Lucrédio, and
S. R. de Lemos Meira, “An initial study on the bug report duplication
problem,” in 2010 14th European Conference on Software Maintenance
and Reengineering. IEEE, 2010, pp. 264–267.

[25] N. Modani, R. Gupta, G. Lohman, T. Syeda-Mahmood, and L. Mignet,
“Automatically identifying known software problems,” in 2007 IEEE
23rd International Conference on Data Engineering Workshop. IEEE,
2007, pp. 433–441.

[26] J. Bader, A. Scott, M. Pradel, and S. Chandra, “Getafix: Learning
to fix bugs automatically,” Proceedings of the ACM on Programming
Languages, vol. 3, no. OOPSLA, pp. 1–27, 2019.

[27] A. Marginean, J. Bader, S. Chandra, M. Harman, Y. Jia, K. Mao,
A. Mols, and A. Scott, “Sapfix: Automated end-to-end repair at scale,”
in 2019 IEEE/ACM 41st International Conference on Software Engi-
neering: Software Engineering in Practice (ICSE-SEIP). IEEE, 2019,
pp. 269–278.

[28] P. J. Guo, T. Zimmermann, N. Nagappan, and B. Murphy, “Characteriz-
ing and predicting which bugs get fixed: an empirical study of microsoft
windows,” in Proceedings of the 32Nd ACM/IEEE International Con-
ference on Software Engineering-Volume 1, 2010, pp. 495–504.

[29] D. G. Feitelson, E. Frachtenberg, and K. L. Beck, “Development and
deployment at facebook,” IEEE Internet Computing, vol. 17, no. 4, pp.
8–17, 2013.

[30] V. Antinyan, J. Derehag, A. Sandberg, and M. Staron, “Mythical unit
test coverage,” IEEE Software, vol. 35, no. 3, pp. 73–79, 2018.

[31] J. M. Zhang, M. Harman, L. Ma, and Y. Liu, “Machine learning test-
ing: Survey, landscapes and horizons,” IEEE Transactions on Software
Engineering, 2020.

[32] M. Harman and P. O’Hearn, “From start-ups to scale-ups: Opportunities
and open problems for static and dynamic program analysis,” in 2018
IEEE 18th International Working Conference on Source Code Analysis
and Manipulation (SCAM). IEEE, 2018, pp. 1–23.

[33] C. Calcagno, D. Distefano, J. Dubreil, D. Gabi, P. Hooimeijer, M. Luca,
P. O’Hearn, I. Papakonstantinou, J. Purbrick, and D. Rodriguez, “Moving
fast with software verification,” in NASA Formal Methods Symposium.
Springer, 2015, pp. 3–11.

[34] F. Gross, G. Fraser, and A. Zeller, “Search-based system testing: high
coverage, no false alarms,” in Proceedings of the 2012 International
Symposium on Software Testing and Analysis, 2012, pp. 67–77.

[35] “Erlang errors and error handling.” [Online]. Available:
https://erlang.org/doc/reference manual/errors.html#exit-reasons

[36] “Erlang SASL error logging.” [Online]. Available:
https://erlang.org/doc/apps/sasl/error logging.html#crash-report

[37] “Friction-free fault-finding with Sapienz.” [Online]. Avail-
able: https://developers.facebook.com/videos/f8-2018/friction-free-fault-
finding-with-sapienz/

[38] S. R. Choudhary, A. Gorla, and A. Orso, “Automated test input gen-
eration for Android: Are we there yet?” in Proc. of ASE’15, 2015, pp.
429–440.

[39] K. Mao, “Multi-objective search-based mobile testing,” Ph.D. disserta-
tion, UCL (University College London), 2017.

[40] K. Mao, M. Harman, and Y. Jia, “Sapienz: Multi-objective automated
testing for android applications,” in Proceedings of the 25th International
Symposium on Software Testing and Analysis, 2016, pp. 94–105.

[41] T. Lindahl and K. Sagonas, “Detecting software defects in telecom
applications through lightweight static analysis: A war story,” in Asian
Symposium on Programming Languages and Systems. Springer, 2004,
pp. 91–106.

[42] E. D. Berger, C. Hollenbeck, P. Maj, O. Vitek, and J. Vitek, “On
the impact of programming languages on code quality: a reproduction
study,” ACM Transactions on Programming Languages and Systems
(TOPLAS), vol. 41, no. 4, pp. 1–24, 2019.

[43] B. Ray, D. Posnett, V. Filkov, and P. Devanbu, “A large scale study of
programming languages and code quality in github,” in Proceedings of
the 22nd ACM SIGSOFT International Symposium on Foundations of
Software Engineering, 2014, pp. 155–165.

[44] J. Zhang, F. Li, D. Hao, M. Wang, H. Tang, L. Zhang, and M. Harman,
“A study of bug resolution characteristics in popular programming
languages,” IEEE Transactions on Software Engineering, 2019.



[45] P. S. Kochhar, F. Thung, and D. Lo, “Code coverage and test suite
effectiveness: Empirical study with real bugs in large systems,” in 2015
IEEE 22nd international conference on software analysis, evolution, and
reengineering (SANER). IEEE, 2015, pp. 560–564.

[46] A. Mockus, N. Nagappan, and T. T. Dinh-Trong, “Test coverage and
post-verification defects: A multiple case study,” in 2009 3rd interna-
tional symposium on empirical software engineering and measurement.
IEEE, 2009, pp. 291–301.

[47] L. Briand and D. Pfahl, “Using simulation for assessing the real impact
of test coverage on defect coverage,” in Proceedings 10th International
Symposium on Software Reliability Engineering (Cat. No. PR00443).
IEEE, 1999, pp. 148–157.

[48] T. T. Chekam, M. Papadakis, Y. Le Traon, and M. Harman, “An
empirical study on mutation, statement and branch coverage fault
revelation that avoids the unreliable clean program assumption,” in 2017
IEEE/ACM 39th International Conference on Software Engineering
(ICSE). IEEE, 2017, pp. 597–608.

[49] J. Ahlgren, M. E. Berezin, K. Bojarczuk, E. Dulskyte, I. Dvortsova,
J. George, N. Gucevska, M. Harman, R. Laemmel, E. Meijer et al.,
“WES: Agent-based user interaction simulation on real infrastructure,”
in Proceedings of the IEEE/ACM 42nd International Conference on
Software Engineering Workshops, 2020, pp. 276–284.

[50] W. Visser, C. S. Pǎsǎreanu, and S. Khurshid, “Test input generation
with java pathfinder,” in Proceedings of the 2004 ACM SIGSOFT
international symposium on Software testing and analysis, 2004, pp.
97–107.

[51] C. Cadar, V. Ganesh, P. M. Pawlowski, D. L. Dill, and D. R. Engler,
“EXE: Automatically generating inputs of death,” ACM Transactions
on Information and System Security (TISSEC), vol. 12, no. 2, pp. 1–38,
2008.

[52] A. Machiry, R. Tahiliani, and M. Naik, “Dynodroid: An input generation
system for Android apps,” in Proceedings of the 2013 9th Joint Meeting
on Foundations of Software Engineering, 2013, pp. 224–234.

[53] X. Zeng, D. Li, W. Zheng, F. Xia, Y. Deng, W. Lam, W. Yang, and T. Xie,
“Automated test input generation for android: Are we really there yet
in an industrial case?” in Proceedings of the 2016 24th ACM SIGSOFT
International Symposium on Foundations of Software Engineering, 2016,
pp. 987–992.

[54] K. Serebryany, “OSS-Fuzz - Google’s continuous fuzzing service for
open source software.” Vancouver, BC: USENIX Association, Aug.
2017.

[55] V. J. M. Manès, H. Han, C. Han, S. K. Cha, M. Egele, E. J. Schwartz,
and M. Woo, “The art, science, and engineering of fuzzing: A survey,”
IEEE Transactions on Software Engineering, 2019.

[56] P. Godefroid, “Fuzzing: Hack, art, and science,” Communications of the
ACM, vol. 63, no. 2, pp. 70–76, 2020.

[57] G. Wassermann, D. Yu, A. Chander, D. Dhurjati, H. Inamura, and
Z. Su, “Dynamic test input generation for web applications,” in Proc.
of ISSTA’08, 2008, pp. 249–260.

[58] S. Artzi, A. Kiezun, J. Dolby, F. Tip, D. Dig, A. Paradkar, and M. D.
Ernst, “Finding bugs in dynamic web applications,” in Proc. of ISSTA’08,
2008, pp. 261–272.

[59] W. G. J. Halfond and A. Orso, “Improving test case generation for web
applications using automated interface discovery,” in Proc. of FSE’07,
2007, pp. 145–154.

[60] C. Pacheco, S. K. Lahiri, M. D. Ernst, and T. Ball, “Feedback-directed
random test generation,” in 29th International Conference on Software
Engineering (ICSE’07). IEEE, 2007, pp. 75–84.

[61] R. Pandita, T. Xie, N. Tillmann, and J. de Halleux, “Guided test
generation for coverage criteria,” in Proc. 26th IEEE International
Conference on Software Maintenance (ICSM 2010), September 2010.

[62] M. Wang, J. Liang, Y. Chen, Y. Jiang, X. Jiao, H. Liu, X. Zhao,
and J. Sun, “SAFL: increasing and accelerating testing coverage with
symbolic execution and guided fuzzing,” in Proceedings of the 40th
International Conference on Software Engineering: Companion Pro-
ceeedings, 2018, pp. 61–64.


